BRKGA Adapted to Multiobjective Unit Commitment - Solving Pareto Frontier for UC Multiobjective Problem using BRKGA SPEA2 NPGA and NSGA II Techniques
نویسندگان
چکیده
The environmental concerns are having a significant impact on the operation of power systems. The traditional Unit Commitment problem, which to minimizes the fuel cost is inadequate when environmental emissions are also considered in the operation of power plants. This paper presents a Biased Random Key Genetic Algorithm (BRKGA) approach combined with non-dominated sorting procedure to find solutions for the unit commitment multiobjective optimization problem. In the first stage, the BRKGA solutions are encoded by using random keys, which are represented as vectors of real numbers in the interval [0,1]. In the subsequent stage, a nondominated sorting procedure similar to NSGA II is employed to approximate the set of Pareto solution through an evolutionary optimization process. The GA proposed is a variant of the random key genetic algorithm, since bias is introduced in the parent selection procedure, as well as, in the crossover strategy. Test results with the existent benchmark systems of 10 units and 24 hours scheduling horizon are presented. The comparison of the obtained results with those of other Unit Commitment (UC) multiobjective optimization methods reveal the effectiveness of the proposed method.
منابع مشابه
A Multiobjective Unit Commitment Problem: Minimization of Productions Costs and Gas Emissions
Given the increasing public awareness of environmental impacts, governments have made regulation on pollutants more stringent. Therefore, the Unit Commitment Problem (UCP), which traditionally minimizes the total production costs, needs to consider the pollutants emissions as another objective. This way, the UCP becomes a multiobjective problem with two competing objectives. The approach propos...
متن کاملEvolutionary Optimization for Multiobjective Portfolio Selection under Markowitz's Model with Application to the Caracas Stock Exchange
Several problems in the area of financial optimization can be naturally dealt with optimization techniques under multiobjective approaches, followed by a decision-making procedure on the resulting efficient solutions. The problem of portfolio optimization is one of them. This chapter studies the use of evolutionary multiobjective techniques to solve such problems, focusing on Venezuelan market ...
متن کاملEvolutionary Multiobjective Optimization Using a Fuzzy-based Dominance Concept
One aspect that is often disregarded in evolutionary multiobjective research is the fact that the solution of a problem involves not only search but decision making. Most of approaches concentrate on adapting an evolutionary algorithm to generate the Pareto frontier. In this work we present a new idea to incorporate preferences in MOEA. We introduce a binary fuzzy preference relation that expre...
متن کاملAbYSS: Adapting Scatter Search for Multiobjective Optimization
In this paper we propose a new algorithm for solving multiobjective optimization problems. Our proposal adapts the well-known scatter search template for single objective optimization to the multiobjective domain. The result is a hybrid metaheuristic algorithm called AbYSS, which follows the scatter search structure but using mutation and crossover operators coming from the field of evolutionar...
متن کاملA Summary and Comparison of MOEA Algorithms
The following MOEA algorithms are briefly summarized and compared: • NPGA Niched Pareto Genetic Algorithm (1994) – NPGA II (2001) • NSGA Non-dominated Sorting Genetic Algorithm (1994) – NSGA II (2000) • SPEA Strength Pareto Evolutionary Algorithm (1998) – SPEA2 (2001) – SPEA2+ (2004) – ISPEA Immunity SPEA (2003) • PAES Pareto Archived Evolution Strategy (2000) – M-PAES Mimetic PAES (2000) • PES...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012